Purinergic inhibition of GABA and glutamate release in the thalamus: Implications for thalamic network activity
نویسندگان
چکیده
Adenosine is a CNS depressant with both pre- and postsynaptic actions. Presynaptically, adenosine decreases neurotransmitter release in the hippocampus but only at excitatory terminals. In the thalamus, however, we show that, in addition to its actions at excitatory synapses, adenosine strongly suppresses monosynaptic inhibitory currents both in relay cells of the thalamic ventrobasal complex (VB) and in inhibitory neurons of the nucleus reticularis thalami (nRt). A concomitant increase in transmission failures and results coefficient of variation analysis are both consistent with a presynaptic mechanism. Pharmacological manipulations support an A1 receptor-mediated process. Slow thalamic oscillations induced in vitro by extracellular stimulation and recorded with extracellular multiunit electrodes in VB and nRt are dampened by adenosine without affecting their periodicity. We conclude that adenosine can presynaptically down-regulate inhibitory postsynaptic responses in thalamus and exert robust antioscillatory effects, likely by synergistic depression of both excitatory and inhibitory neurotransmitter release.
منابع مشابه
GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملP8: Thalamic Damage and Memory
Memory is the cognitive ability that allows acquiring, store and recalling information. Anterior thalamic dysfunction creates memory deficits in rats and humans. Anterior thalamus forms a memory network in connection with the hippocampus. This connectivity profile proposes that ventrolateral and anterior thalamus may display a nexus between reminder and control functions, such as action or atte...
متن کاملO23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines
The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...
متن کاملFunctional mapping of GABA(B)-receptor subtypes in the thalamus.
The thalamus plays an important role in attention mechanisms and the generation of brain rhythms. gamma-Aminobutyric acid type B (GABA(B)) receptors are known to regulate the main output neurons of the thalamus, the thalamocortical relay (TCR) cells. However, the contributions of the two predominant GABA(B)-receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), to the control of TCR cell activity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 15 شماره
صفحات -
تاریخ انتشار 1995